History:
The western honey bee, Apis mellifera Linnaeus, naturally occurs in Europe, the Middle East, and Africa. This species has been subdivided into at least 20 recognized subspecies (or races), none of which are native to the Americas. However, subspecies of the western honey bee have been spread extensively beyond their natural range due to economic benefits related to pollination and honey production.
Description:
Like all Hymenopterans, honey bees have haplo-diploid sex determination. Unfertilized eggs (no paternal genetic contribution) develop into drones (males), and fertilized eggs (both maternal and paternal genetic contribution) develop into females. Worker honey bees are non-reproductive females. They are the smallest in physical size of the three castes and their bodies are specialized for pollen and nectar collection. Both hind legs of a worker honey bee have a corbicula (pollen basket) specially designed to carry large quantities of pollen back to the colony. Worker honey bees produce wax scales on the underside of their abdomen. The scales are used to construct the wax comb within the colony. Workers have a barbed stinger that is torn, with the poison sac, from the end of their abdomen when they deploy the sting into a tough-skinned victim. This results in the worker bee’s death. The queen honey bee is the only reproductive female in the colony during normal circumstances (some workers can lay unfertilized male eggs in the absence of a queen). Drones are the male caste of honey bees. The drone’s head and thorax are larger than those of the female castes, and their large eyes appear more ‘fly-like,’ touching in the top center of the head. Their abdomen is thick and blunt at the end, appearing bullet-shaped rather than pointy at the end as with the female castes.
Biology:
In the honey bee colony, labor is divided among individuals based on caste and age. A drone’s only purpose is to mate with a virgin queen from another colony. The queen is the sole egg layer in the colony and is responsible for producing all of the colony’s offspring (up to 1500 eggs/day). Worker honey bees are thusly named because they perform all colony maintenance tasks. The cohesiveness of the honey bee colony is dependent on effective communication. Honey bees primarily communicate within the colony through chemical signals called pheromones. Workers, drones, and queens have various glands that produce pheromones. These pheromones include the queen mandibular pheromone that enables a colony to detect the presence of their queen, brood pheromones that signal the type of care required by the immature bees in the colony, and Nasanov pheromone that communicates the location of the colony to workers who may have been displaced in a colony disturbance.
One of the most notable honey bee behaviors is stinging. Stinging is a defensive behavior worker bees use to protect the colony. When a colony intruder is detected, guard bees release an alarm pheromone that elicits a defensive response by the colony. Moreover, when a honey bee stings, it releases alarm pheromone to attract more bees to sting the location that was stung. All worker honey bees die after stinging, and European honey bees rarely sting without provocation.
Life Cycle:
Due to their highly social life history, honey bee colonies can be considered superorganisms. This means the entire colony, rather than the bees individually, is viewed as the biological unit. With that in mind, honey bees reproduce not by producing more individual bees, but rather by producing more colonies. The reproductive process of creating a new colony is called swarming.
European honey bees typically swarm in the spring and early summer when pollen and nectar resources are plentiful. To initiate the swarming process, 10 to 20 daughter queens are produced by the colony. When the daughter queens are in the late pupal stage, the mother queen and about 2/3rds of the adult workers leave the colony and travel to a location where they will coalesce while they send scout workers in search of a place to establish a new colony (typically an enclosed cavity, like a tree hollow).
European honey bees are adapted to temperate climates, where there is only a short season with generous amounts of pollen and nectar available. For this reason, they typically swarm only once a year. The remainder of the spring/summer is devoted to collecting and storing enough nectar and pollen to generate the food stores needed to survive the fall and winter.
This behavior of resource hording is what makes European honey bees excellent honey producers. Nectar is collected from flowers and transformed into honey though enzymatic processes and dehydration within the colony. At this time, the honey is capped over in the wax comb where it can stay fresh almost indefinitely, depending on the original nectar source. Beekeepers and honey hunters may then collect this honey comb for human consumption.
The western honey bee, Apis mellifera Linnaeus, naturally occurs in Europe, the Middle East, and Africa. This species has been subdivided into at least 20 recognized subspecies (or races), none of which are native to the Americas. However, subspecies of the western honey bee have been spread extensively beyond their natural range due to economic benefits related to pollination and honey production.
Description:
Like all Hymenopterans, honey bees have haplo-diploid sex determination. Unfertilized eggs (no paternal genetic contribution) develop into drones (males), and fertilized eggs (both maternal and paternal genetic contribution) develop into females. Worker honey bees are non-reproductive females. They are the smallest in physical size of the three castes and their bodies are specialized for pollen and nectar collection. Both hind legs of a worker honey bee have a corbicula (pollen basket) specially designed to carry large quantities of pollen back to the colony. Worker honey bees produce wax scales on the underside of their abdomen. The scales are used to construct the wax comb within the colony. Workers have a barbed stinger that is torn, with the poison sac, from the end of their abdomen when they deploy the sting into a tough-skinned victim. This results in the worker bee’s death. The queen honey bee is the only reproductive female in the colony during normal circumstances (some workers can lay unfertilized male eggs in the absence of a queen). Drones are the male caste of honey bees. The drone’s head and thorax are larger than those of the female castes, and their large eyes appear more ‘fly-like,’ touching in the top center of the head. Their abdomen is thick and blunt at the end, appearing bullet-shaped rather than pointy at the end as with the female castes.
Biology:
In the honey bee colony, labor is divided among individuals based on caste and age. A drone’s only purpose is to mate with a virgin queen from another colony. The queen is the sole egg layer in the colony and is responsible for producing all of the colony’s offspring (up to 1500 eggs/day). Worker honey bees are thusly named because they perform all colony maintenance tasks. The cohesiveness of the honey bee colony is dependent on effective communication. Honey bees primarily communicate within the colony through chemical signals called pheromones. Workers, drones, and queens have various glands that produce pheromones. These pheromones include the queen mandibular pheromone that enables a colony to detect the presence of their queen, brood pheromones that signal the type of care required by the immature bees in the colony, and Nasanov pheromone that communicates the location of the colony to workers who may have been displaced in a colony disturbance.
One of the most notable honey bee behaviors is stinging. Stinging is a defensive behavior worker bees use to protect the colony. When a colony intruder is detected, guard bees release an alarm pheromone that elicits a defensive response by the colony. Moreover, when a honey bee stings, it releases alarm pheromone to attract more bees to sting the location that was stung. All worker honey bees die after stinging, and European honey bees rarely sting without provocation.
Life Cycle:
Due to their highly social life history, honey bee colonies can be considered superorganisms. This means the entire colony, rather than the bees individually, is viewed as the biological unit. With that in mind, honey bees reproduce not by producing more individual bees, but rather by producing more colonies. The reproductive process of creating a new colony is called swarming.
European honey bees typically swarm in the spring and early summer when pollen and nectar resources are plentiful. To initiate the swarming process, 10 to 20 daughter queens are produced by the colony. When the daughter queens are in the late pupal stage, the mother queen and about 2/3rds of the adult workers leave the colony and travel to a location where they will coalesce while they send scout workers in search of a place to establish a new colony (typically an enclosed cavity, like a tree hollow).
European honey bees are adapted to temperate climates, where there is only a short season with generous amounts of pollen and nectar available. For this reason, they typically swarm only once a year. The remainder of the spring/summer is devoted to collecting and storing enough nectar and pollen to generate the food stores needed to survive the fall and winter.
This behavior of resource hording is what makes European honey bees excellent honey producers. Nectar is collected from flowers and transformed into honey though enzymatic processes and dehydration within the colony. At this time, the honey is capped over in the wax comb where it can stay fresh almost indefinitely, depending on the original nectar source. Beekeepers and honey hunters may then collect this honey comb for human consumption.